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Finslerian Lie Variations for Dust-Like Matter

P. C. Stavrinos*® and S. Iked&

We use the Finslerian Lie variations and obtain the equations of motion of dust-like
matter.
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1. INTRODUCTION

As is well known (Raigorodski, 1995; Raigorodskial., 1999; Yano, 1957)
the Lie variations in Riemannian geometry are defined, for a geometrical object
A(X), by

seA= A(X) — AKX) (1)
where we have put the infinitesimal prime transformations in the form
X'=x +n'st & =nlst
A
A(X) = A A€ A=
()= AX) + A A= o
In (1) A(x) and A'(x’) are the components of the obje&t in the coordinate
systemsx' and x'', respectively. Therefore we can obtain the following Lie
variations:

8o = ' (X) — p(X) = 9(X) — (p(X) + 9,&') = —¢, &
s: A= A'(X) — Al (X) = ‘K/A' (x) — (A (x) + A&
A o X !
= (A +EA) — (A +AE) =-Ag +6A ()
8:Gix = —Gi &' — G|k§|i - Gilf,lk
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etc. Starting from the Riemannian Lie variations (2) we determine the Lie vari-
ations in Finsler geometry and obtain the equations of motion of the dust-like
matter (incoherent fluid) by means of the variational principle with respect to the
Finslerian case.

2. FINSLERIAN LIE VARIATIONS

~n this section we define the Finslerian Lie variations. In the case of a vector
A'(x, X), we can put asin (1)

S A = A'(X) — Al(X) (3)
X' =x +&(x), X =x+&x
where in the Finslerian case

X' +&)

ox!

AX) = Ax) + A g + Asx

i | j

Therefore we can obtain (Rund, 1959)
SeA =& A — Ajg' — Al (6)

For the case of a covariant tensor fi€g, (X, X)
8:Gih = Gin(X) — Gin(X)

A'(X) = a—):(I' A (x) = A(x) = A(x) + £ A'(x) (4)

®)

ax' axh .
= WWGih — [Gih + Giny&' + Gin,i&/x™]
= (Gin — Gin&} — Gi&}) — (Gin + Gin&' + Gip i€\ X™)

= —Gin&; — Gi&), — Gini&' — Gip &\ nx™.

3. EQUATIONS OF MOTION OF THE DUST-LIKE MATTER

First we give the equations of motion for an incoherent fluid in pseudo-
Riemannian space using the Lie variation in Raigorodski (1995) and Raigorodski
et al. (1991), and after that we derive, using the Finslerian Lie variation, the
equations of motion of the incoherent fluid in a Finslerian space—time.

The action of a physical system has the from

S=/adQ=/AJ—_ng )
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with @« = A/—g whereA is a scalar formed from the quantities which charac-
terize the examined system (we have in view the generalized coordinates and the
velocities), and from the quantities which represent the “background” (the rest).
We shall vary the actio, using the Lie variation.
We have

SgS=f8§adQ=/[(55A\/——Q+A(55\/§)]d52.

Applying the formulas

5 = W) — W) — 5 = e ®
and
1 — —— <l
vma= Vo g ) =@
we find

8:S= —/A,igiJ—_ng — /A(\/—_gsi),i ds.
Hence, the Lie variation of the action is always zero,
BESzégfadQ=/8gadQ=0, (10)
and therefore we should vary either only the quantities related to the examined

object, or those which characterize the background.
For this, we rewrite the density of the Lagrangiaim the form

o = O B /=g,

where O;..x is a tensor which is built from quantities related to the examined
system, and the tens& " represents the background.
Having in view (10), we have

/ Sear - dQ = / (6:O1.x)B " Ky/—gdQ + f O:.x8:(B"*y/=g)dQ =0,
or
/ B"Ky/=0g(8: Oi.k) Q2 = — / Oi.x8:(B'"*y/=g)dQ. (11)

Therefore, for obtaining the equations which describe the evolution of the physical
object (the equations of motion), we have to choose one of two possible ways of
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applying the principle of least action:

e to submit to Lie variation inside the integral of action only those quanti-
ties, which characterize the examined physical object, considering that the
characteristics of the background are given (i.e., fixed);

e to vary only the quantities which are related to the background.

This conclusion can be regarded as an interpretation of Mach’s principle
of relativity, in terms of variational principles (Mach consideres as background
the “fixed stars,” and as physical object—whose movement is investigated, some
“body”) (Raigorodskiet al., 1999).

We shall examine the continuum of individual particles which do not interact
(a dust-like matter, or an incoherent fluid) (Raigorodski, 1995).

The energy—momentum tensor of the incoherent fluid is

T = pu'uk, (12)

whereu is the invariant density of the mass and
U — dx
T ds

is the four-dimensional velocity vector in this fluid, which satisfies the continuity
equation (the conservation principle in its differential formulation):

(nu'v=0), = (14)

Let us imagine that an incoherent fluid moves inside some field, whose po-
tential is a symmetric tensor of rank 2 with componeBfg = Gij. We assume,
that the action can be expressed in the form

(13)

S=p f Gt U Y=g d2, (15)

whereg is some constant.

On the basis of the principle of least action, we submit to Lie variation only
the fieldGjy.

We have

5:5 = p %G v=g dez = .
Using the relation (2), we obtain

S=p {—/Gikmu‘ uy/=gé' dQ — /G|kuu‘uk¢—_g§"i do

- [t ~ge, e o (16)
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We integrate by parts the last two integrals. Applying the Gauss’ theorem and
taking into consideration the relation (14) and the fact that on the boundary of the
domain of integration the variations &f vanish, we obtain

8:S=a /[(le,i + Gk — Gik,)pu' Uk + Gigpet' U + Gy uu' U Jg' /=g d

= 2u /M [Gn c:j_us + %(le,i + Gil k — Gk U Uk] £y/=—gde=0. (17)

Sincet' are arbitrary, we find

uGil (Z_us' + M%(le,i + Gk — Gix)u'u* = 0. (18)
We introduce the tens@'™, which satisfies the condition
GiG™ =4, (19)
and we multiply this tensor with Eqg. (18). We get
% + %Glm(le,i + Gil k — Gk )u'u* = 0. (20)

Equations (20) are the equations of motion of an incoherent fluid inside a field
whose potentials are the components of the te@sgr

It is clear that if this field were missing, then the equations of motion would
have been of the form

dum
or,
d2xm
— =0, (22)

i.e., the field lines of the incoherent fluid would have been the straight lines
xM =aMs 4 p™,

wherea™ andb(™ are constants.

If the field GIX is present, then the noninteracting particles (the dust-like
matter) move along curves which are described by Eq. (20). The we€twhich
is tangent to the field-lines varies with time, and determines the direction of the
movement of the particles at each point of space—time.

We remark that the potential of the field, which interacts with the matter,
are not determined. The deviation of the movement of the particles from a recti-
linear motion is due to the action of the field upon the particles, as follows directly
from relation (20). This deviation is governed by the derivatives of the potentials.
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The fact that a perfect fluid has pressyreequal to zero, is intrinsically
connected with the fact that the movement of the material particles is oriented.
Therefore it is reasonable for someone to extend the gravitational source of the
energy—momentum tensdr¥ in the Finslerian case, for this state of the matter.
So we can take that the energy—momentum tensor depends on the positidn
the directionu(x). T'K(x, u(x)) is defined to be

T (x, u(x)) = pu(x)u' u*

The dependence of 'k by the velocityu extends the relation (12) of an
incoherent fluid in the Riemannian space—time.

We shall apply the Finslerian Lie variation to the Finslerian acgaf the
dust—like matter and obtain the equations of motion.

If the dust-like matter is moving in a field with potentias, (X, X) then the
action of it is given by

S= a/;LGikui uky/=g dQ (23)

The vector field is tangent to the streamlines of the fluid which satisfies the
continuity equation (the conservation law in its differential formulation)

(nu'y/=0g); =0

In (23), g is the determinant of the Finslerian metgg(x, x) of the four-
dimensional space—time adis the volume element. Then, using the variational
principleagé = 0 we can obtain the equation of the dust-like matter as follows:

|
Gii du + }(Glh,i + Giih — Gin)u'u* + :—L(Gih Dmx™u'u" =0 (24)
ds 2 2 '

Concerning the tern@;y, ;),m, in particular the tern;, ; its physical meaning
is adirection-dependent forcerhich causes the deviation from the Riemannian
equation of motion or the Riemannian geodesics. Stagg gives the Cartan’s
vertical connection coefficienGy, with respect to the Finsleria@;;, field (Rund,
1959), the gravityCin,m contained in the termQ;y, i), mX™ =~ Cin;,mX™ can be
tensorially absorbed into the curvatupg,. The definition ofPy, is given by

F~'Pjikn = Ckih,j — Cikni — CuimCih Y + CkCrminry'

This fact is very interesting and important because the curvayje has
not fully been considered in physical and geometrical problems until now. The
curvature Pym governs the intermediate state between thdependent state,
represented by the curvatuRy,m and thex-dependent state, represented by the
curvatureShm (as to the definition oRjym and Sinm see (Miron and Anastasiei,
1997; Rund, 1959).
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The equation of motion (24) can be written
du™
ds
where we introduced the tens6!™ which satisfies the conditioB!™G;, = 5M.

The equations of motion for the dust-like matter in the Finslerian concept take the
final form

1
+ = ;7,{“(x uu 4 = G'm(cs,h Dxkutu =0 (25)

su™ Imsk, i h

E + Cih|'kG—X uu'=0 (26)
where we have put

su™  dum™

s = ds + 7, x)u'ul

whereyi"(x, X) represents the Christoffel symbols of Finslerian space—time.

Remark 3.1. Inthe case thatthe Finslerian space—time is of Berwald §ipg, =

0. 7" = %"(x), the equations of motion (26) are reduced to the Riemannian ones
su™ du™
s = ds + 7 x)u' ! (27)
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