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Finslerian Lie Variations for Dust-Like Matter

P. C. Stavrinos1,3 and S. Ikeda2

We use the Finslerian Lie variations and obtain the equations of motion of dust-like
matter.
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1. INTRODUCTION

As is well known (Raigorodski, 1995; Raigorodskiet al., 1999; Yano, 1957)
the Lie variations in Riemannian geometry are defined, for a geometrical object
A(x), by

δξ A = A′(x′)− A(x′) (1)

where we have put the infinitesimal prime transformations in the form

xi ′ = xi + ni δt ξ i = ni δt

A(x′) = A(x)+ A,l ξ
l A,l = ∂A

∂xl

In (1) A(x′) and A′(x′) are the components of the objectAn in the coordinate
systemsxi and xi ′ , respectively. Therefore we can obtain the following Lie
variations:

δξϕ = ϕ′(x′)− ϕ(x′) = ϕ(x)− (ϕ(x)+ ϕ,l ξ
l ) = −ϕ,l ξ

l

δξ Ai = Ai ′ (x′)− Ai (x′) = ∂xi ′

∂xl
Al (x)− (Ai (x)+ Ai

,l ξ
l
)

= (Ai (x)+ ξ i
,l A

l
)− (Ai (x)+ Ai

,l ξ
l
) = −Ai

,l ξ
l + ξ i

,l A
l (2)

δξGik = −Gik,l ξ
l − Glkξ

l
,i − Gil ξ

l
,k
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etc. Starting from the Riemannian Lie variations (2) we determine the Lie vari-
ations in Finsler geometry and obtain the equations of motion of the dust-like
matter (incoherent fluid) by means of the variational principle with respect to the
Finslerian case.

2. FINSLERIAN LIE VARIATIONS

In this section we define the Finslerian Lie variations. In the case of a vector
Ai (x, ẋ), we can put as in (1)

δξ Ai = Ai ′ (x′)− Ai (x′) (3)

xi ′ = xi + ξ i (x), ẋi ′ = ẋi + ξ i
,l ẋ

l

where in the Finslerian case

Ai ′ (x′) = ∂xi ′

∂xl
Al (x) = ∂(xi + ξ i )

∂xl
Al (x) = Ai (x)+ ξ i

,l A
l (x) (4)

Ai (x′) = Ai (x)+ Ai
,l ξ

l + Ai
,i δẋ

l

Ai
l̇ =

∂Ai

∂ ẋl
δẋl = ∂ξ l

∂x j

dxj

dt
(5)

Therefore we can obtain (Rund, 1959)

δξ Ai = ξ i
,l A

l − Ai
,l ξ

l − Ai
l̇ ξ

l
, j ẋ

j (6)

For the case of a covariant tensor fieldGih(x, ẋ)

δξGih = Gi ′h′ (x
′)− Gih(x′)

= ∂xi

∂xi ′
∂xh

∂xh′ Gih −
[
Gih + Gih,l ξ

l + Gih,i ξ
l
,mẋm

]
= (Gih − Glhξ

l
,i − Gil ξ

l
,h

)− (Gih + Gih,l ξ
l + Gih,l̇ ξ

l
,mẋm

)
= −Glhξ

l
,i − Gil ξ

l
,h − Gih,l ξ

l − Gih,l̇ ξ
l
,mẋm.

3. EQUATIONS OF MOTION OF THE DUST-LIKE MATTER

First we give the equations of motion for an incoherent fluid in pseudo-
Riemannian space using the Lie variation in Raigorodski (1995) and Raigorodski
et al. (1991), and after that we derive, using the Finslerian Lie variation, the
equations of motion of the incoherent fluid in a Finslerian space–time.

The action of a physical system has the from

S=
∫
αdÄ =

∫
3
√−gdÄ (7)
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with α = 3√−g where3 is a scalar formed from the quantities which charac-
terize the examined system (we have in view the generalized coordinates and the
velocities), and from the quantities which represent the “background” (the rest).

We shall vary the actionS, using the Lie variation.
We have

δξS=
∫
δξα dÄ =

∫
[(δξ3

√−g+3(δξ
√

g)] dÄ.

Applying the formulas

δξ9 = 9 ′(x′)−9(x)− ∂9
∂xi

ξ i = −9,i ξ
i (8)

and

δξ
√−g = −√−g

(
ξ l

,l +
1√−g
· ∂
√−g

∂xl
ξ l

)
= −∂(

√−gξ l )

∂xl
(9)

we find

δξS= −
∫
3,i ξ

i√−g dÄ−
∫
3(
√−gξ i ),i dÄ.

Hence, the Lie variation of the action is always zero,

δξS= δξ
∫
α dÄ =

∫
δξα dÄ = 0, (10)

and therefore we should vary either only the quantities related to the examined
object, or those which characterize the background.

For this, we rewrite the density of the Lagrangianα in the form

α = Oi ···k · Bi ···k√−g,

where Oi ···k is a tensor which is built from quantities related to the examined
system, and the tensorBi ···k represents the background.

Having in view (10), we have∫
δξα · dÄ =

∫
(δξOi ···k)Bi ···k√−g dÄ+

∫
Oi ···kδξ (Bi ···k√−g) dÄ = 0,

or ∫
Bi ···k√−g(δξOi ···k) dÄ = −

∫
Oi ···kδξ (Bi ···k√−g) dÄ. (11)

Therefore, for obtaining the equations which describe the evolution of the physical
object (the equations of motion), we have to choose one of two possible ways of
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applying the principle of least action:

• to submit to Lie variation inside the integral of action only those quanti-
ties, which characterize the examined physical object, considering that the
characteristics of the background are given (i.e., fixed);
• to vary only the quantities which are related to the background.

This conclusion can be regarded as an interpretation of Mach’s principle
of relativity, in terms of variational principles (Mach consideres as background
the “fixed stars,” and as physical object—whose movement is investigated, some
“body”) (Raigorodskiet al., 1999).

We shall examine the continuum of individual particles which do not interact
(a dust-like matter, or an incoherent fluid) (Raigorodski, 1995).

The energy–momentum tensor of the incoherent fluid is

Tik = µui uk, (12)

whereµ is the invariant density of the mass and

ui = dxi

ds
(13)

is the four-dimensional velocity vector in this fluid, which satisfies the continuity
equation (the conservation principle in its differential formulation):

(µui√−g),i = 0 (14)

Let us imagine that an incoherent fluid moves inside some field, whose po-
tential is a symmetric tensor of rank 2 with componentsGik = Gki . We assume,
that the action can be expressed in the form

S= β
∫

Gikµui uk√−g dÄ, (15)

whereβ is some constant.
On the basis of the principle of least action, we submit to Lie variation only

the fieldGik .
We have

δξS= β
∫

(δξGik)µui uk√−g dÄ = 0.

Using the relation (2), we obtain

δS= β
{
−
∫

Gik,lµui uk√−gξ l dÄ−
∫

Glkµui uk√−gξ l
,i dÄ

−
∫

Gilµui uk√−gξ l
,k dÄ

}
= 0. (16)
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We integrate by parts the last two integrals. Applying the Gauss’ theorem and
taking into consideration the relation (14) and the fact that on the boundary of the
domain of integration the variations ofξ l vanish, we obtain

δξS= α
∫ [

(Glk,i + Gil ,k − Gik,l )µui uk + Gikµui uk
,l + Gilµui

,kuk
]
ξ l√−g dÄ

= 2α
∫
µ

[
Gil

dui

ds
+ 1

2
(Glk,i + Gil ,k − Gik,l )u

i uk

]
ξ l√−g dÄ = 0. (17)

Sinceξ i are arbitrary, we find

µGil
dui

ds
+ µ1

2
(Glk,i + Gil ,k − Gik,l )u

i uk = 0. (18)

We introduce the tensorGlm, which satisfies the condition

Gil G
lm = δm

i , (19)

and we multiply this tensor with Eq. (18). We get

dum

ds
+ 1

2
Glm.(Glk,i + Gil ,k − Gik,l )u

i uk = 0. (20)

Equations (20) are the equations of motion of an incoherent fluid inside a field
whose potentials are the components of the tensorGik .

It is clear that if this field were missing, then the equations of motion would
have been of the form

µ
dum

ds
= 0, (21)

or,

d2xm

ds2
= 0, (22)

i.e., the field lines of the incoherent fluid would have been the straight lines

xm = a(m)s+ b(m),

wherea(m) andb(m) are constants.
If the field Gik is present, then the noninteracting particles (the dust-like

matter) move along curves which are described by Eq. (20). The vectorum which
is tangent to the field-lines varies with time, and determines the direction of the
movement of the particles at each point of space–time.

We remark that the potentialsGik of the field, which interacts with the matter,
are not determined. The deviation of the movement of the particles from a recti-
linear motion is due to the action of the field upon the particles, as follows directly
from relation (20). This deviation is governed by the derivatives of the potentials.
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The fact that a perfect fluid has pressurep equal to zero, is intrinsically
connected with the fact that the movement of the material particles is oriented.
Therefore it is reasonable for someone to extend the gravitational source of the
energy–momentum tensorTik in the Finslerian case, for this state of the matter.
So we can take that the energy–momentum tensor depends on the positionx and
the directionu(x). Tik(x, u(x)) is defined to be

Tik(x, u(x)) = µ(x)ui uk

The dependence ofTik by the velocityu extends the relation (12) of an
incoherent fluid in the Riemannian space–time.

We shall apply the Finslerian Lie variation to the Finslerian actionS of the
dust–like matter and obtain the equations of motion.

If the dust-like matter is moving in a field with potentialsGih(x, ẋ) then the
action of it is given by

S̃= a
∫
µGikui uk√−g dÄ (23)

The vector field is tangent to the streamlines of the fluid which satisfies the
continuity equation (the conservation law in its differential formulation)

(µui√−g),i = 0

In (23), g is the determinant of the Finslerian metricgik(x, ẋ) of the four-
dimensional space–time anddw is the volume element. Then, using the variational
principleδξ S̃= 0 we can obtain the equation of the dust-like matter as follows:

Gli
dui

ds
+ 1

2
(Glh,i + Gil ,h − Gih,l )u

i uk + 1

2
(Gih,l̇ ),mẋmui uh = 0 (24)

Concerning the term (Gih,l̇ ),m, in particular the termGih,l̇ its physical meaning
is a direction-dependent forcewhich causes the deviation from the Riemannian
equation of motion or the Riemannian geodesics. SinceGik,l̇ gives the Cartan’s
vertical connection coefficientsCihl with respect to the FinslerianGih field (Rund,
1959), the gravityCihl ,m contained in the term (Gih,l̇ ),mẋm ≈ Cihl ,mẋm can be
tensorially absorbed into the curvaturePiklh . The definition ofPiklh is given by

F−1Pjikh = Ckih, j − Cjkh,i − CkimCm
jh,r yr + Cm

jkCmih,r yr

This fact is very interesting and important because the curvaturePiklh has
not fully been considered in physical and geometrical problems until now. The
curvaturePiklm governs the intermediate state between thex-dependent state,
represented by the curvatureRilhm and theẋ-dependent state, represented by the
curvatureSilhm (as to the definition ofRilhm andSilhm see (Miron and Anastasiei,
1997; Rund, 1959).
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The equation of motion (24) can be written

dum

ds
+ 1

2
γ̃m

il (x, ẋ)ui ul + 1

2
Glm(Gih,l̇ ),kẋkui uh = 0 (25)

where we introduced the tensorGlm which satisfies the conditionGlmGil = δm
i .

The equations of motion for the dust-like matter in the Finslerian concept take the
final form

δum

δs
+ Cihl ,kGlmẋkui uh = 0 (26)

where we have put

δum

δs
= dum

ds
+ γ̃m

il (x, ẋ)ui ul

where ˜γm
il (x, ẋ) represents the Christoffel symbols of Finslerian space–time.

Remark 3.1. In the case that the Finslerian space–time is of Berwald type,Cihl ,k =
0, γ̃m

il = γ̃m
il (x), the equations of motion (26) are reduced to the Riemannian ones

δum

δs
= dum

ds
+ γ̃m

il (x)ui ul (27)
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